2 research outputs found

    Analgorithmic Framework for Automatic Detection and Tracking Moving Point Targets in IR Image Sequences

    Get PDF
    Imaging sensors operating in infrared (IR) region of electromagnetic spectrum are gaining importance in airborne automatic target recognition (ATR) applications due to their passive nature of operation. IR imaging sensors exploit the unintended IR radiation emitted by the targets of interest for detection. The ATR systems based on the passive IR imaging sensors employ a set of signal processing algorithms for processing the image information in real-time. The real-time execution of signal processing algorithms provides the sufficient reaction time to the platform carrying ATR system to react upon the target of interest. These set of algorithms include detection, tracking, and classification of low-contrast, small sized-targets. Paper explained a signal processing framework developed to detect and track moving point targets from the acquired IR image sequences in real-time.Defence Science Journal, Vol. 65, No. 3, May 2015, pp.208-213, DOI: http://dx.doi.org/10.14429/dsj.65.816

    Advanced Mission Management System for Unmanned Aerial Vehicles

    Get PDF
    The paper presents advanced mission management system (MMS) for unmanned aerial vehicles, based on integrated modular avionics (IMA) architecture. IMA architecture enables the MMS to host high end functions for autonomous navigation and attack. MMS is a collection of systems to execute the mission objectives. The system constitutes mission computer (MC), sensors and other sub-systems. The MMS-MC needs to execute advanced algorithms like terrain referenced navigation, vision-aided navigation, automatic target recognition, sensor fusion, online path planning, and tactical planning for autonomy and safety. This demands high-end architecture in terms of hardware, software, and communication. The MMS-MC is designed to exploit the benefits of IMA concepts such as open system architecture, hardware and software architecture catering for portability, technology transparency, scalability, system reconfigurability and fault tolerance. This paper investigates on advanced navigation methods for augmenting INS with terrain-referenced navigation and vision-aided navigation during GPS non-availability. This paper also includes approach to implement these methods and simulation results are provided accordingly, and also discusses in a limited way, the approach for implementing online path planning.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.438-444, DOI:http://dx.doi.org/10.14429/dsj.64.599
    corecore